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Abstract The Mediterranean coast of Spain often experiences intense rainfall, sometimes 

reaching remarkable amounts of more than 400 mm in one day. The aim of this work is to study 

possible changes of extreme precipitation in Spain for this century, simulated from several 

CMIP5 climate models. Eighteen climate projections (9 models under RCP4.5 and RCP8.5 

scenarios) were downscaled using a two-step analogue/regression statistical method. We have 

selected 144 rain gauges as the rainiest of a network by using a threshold of 250 mm in one day 

for a return period of 100 years. Observed time-series have been extended using the ERA40 

reanalysis and have subsequently been used to correct the climate projections according to a 

parametric quantile-quantile method. Five theoretical distributions (Gamma, Weibull, Classical 

Gumbel, Reversed Gumbel and Log-logistic) have been used to fit the empirical cumulative 

functions (entire curves, not only the upper tail) and to estimate the expected precipitation 

according to several return periods: 10, 20, 50 and 100 years. Results in the projected changes 

for 2051-2100 compared to 1951-2000 are similar (in terms of sign and value) for the four return 

periods. The analyzed climate projections show that changes in extreme rainfall patterns will be 

generally less than the natural variability. However, possible changes are detected in some 

regions: decreases are expected in a few kilometres inland, but with a possible increase in the 

coastline of southern Valencia and northern Alicante, where the most extreme rainfall was 

recorded. These results should be interpreted with caution because of the limited number of 

climate projections; anyway, this work shows that the developed methodology is useful for 

studying extreme rainfall under several climate scenarios. 

 

Keywords: climatic change, extreme precipitation, rainfall, statistical downscaling, CMIP5, 

Spain. 

 

 

1 Introduction 
 

The Mediterranean climate is characterized by a high variability of the rainfall patterns, 

occasionally including both long periods of drought and extraordinary rainfall events (Pérez-

Cueva, 1983, Llasat et al., 1996, Font-Tullot, 2000). The east of the Iberian Peninsula is one of 

the Mediterranean regions where highest rainfall values have been recorded. In most cases, 

extreme rain is caused by deep convection of highly organized systems, which are generated in a 

synoptic environment of forcing for ascent (Lazier et al., 2001). One item that usually appears in 

that synoptic situations is the cut-off low (closed upper-level low), popularly known as Gota Fría 

in Spain (Armengot-Serrano 1994).   
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Several studies on extreme events in this area have shown that precipitation expected in a 

day, for a return period of 100 years, exceeds 400 mm in some cases (De Luís, 2000, Egozcue 

and Ramis, 2001). The highest values include the official record of 817 mm in Oliva (Valencia) 

on 1987, November 3rd (Armengot-Serrano, 1994, AEMet, 2007, Ramis et al., 2013). The 

south-eastern coast of the peninsula is one of the areas that have experienced extraordinary 

rainfall – we highlight the 600 mm in a few hours in Almeria on 1973, October 17th (Gil and 

Olcina, 1999). But several significant flood episodes have also been recorded in the northern 

coast of Spain, one of them out of the ordinary, floods in Bilbao in 1983 (Ugarte and Gonzalez, 

1984), with 503 mm recorded in one day. 

Moreover, local adaptation policies to climate change require the possible evolution of 

extreme rainfall to minimize flooding risks and its consequences. Nevertheless, there are 

significant uncertainties in the future evolution of extreme rainfall due to several sources: 

climate simulations (emission scenarios and climate models), methods of extreme rainfall 

estimation and large natural variability of precipitation. Theoretically, most of these uncertainties 

can be partially quantified by using a large number of climate projections. However, deep 

convection is poorly simulated by global models (Herrmann 2008), and therefore climate models 

need to be downscaled to better detect deep convection.  

In the statistical downscaling approach, high-resolution predictands are obtained by applying 

to the climate models outputs a set of relationships previously identified in the observed climate 

between these predictands and large-scale predictors (Imbert and Benestad, 2005). 

Thanks to the CMIP5 (Coupled Model Intercomparison Project Phase 5), a set of atmosphere-

ocean global climate models have been made available for its use in climatic studies. One of the 

core simulations within the suite of CMIP5 long-term experiments are the historical runs which 

cover much of the industrial period (1850 - at least 2005) and that can be referred to as 

“twentieth century” simulations (Taylor et al., 2012). They are forced by observed atmospheric 

composition changes (reflecting both anthropogenic and natural sources) and, for the first time, 

including time-evolving land cover. These historical runs have a key role for our work: they 

allow us to evaluate model performance against present climate (Taylor et al., 2009). 

Precipitation outputs obtained directly from CMIP5 models show serious problems to 

reproduce the extreme values, which are mainly due to its insufficient spatial resolution. 

Precipitation simulated by the ERA40 Re-Analysis presents similar problems. For this reason, a 

statistical downscaling is required in order to simulate a better probability distribution of 

precipitation at local scale. One of the methods that have obtained better results in Spain is the 

two-step analogue/regression technique, developed by Ribalaygua et al. (2012) and validated for 

Europe (Linden and Mitchell 2009, Goodess et al. 2011). 

The aim of this work is to study the projected evolution of extreme precipitation in Spain for 

the next 100 years by using several downscaled CMIP5 climate models. However, extreme 

values associated with empirical return periods have a large error because they are estimated 

with very few values of precipitation. For example, the highest value in a time-series has never 

been surpassed, so its empirical return period is infinity. In addition, most time-series are shorter 

than ten years. For all these reasons, the use of theoretical functions is required to extrapolate 

return periods. Some theoretical distributions are able to fit the entire set of empirical values, 

including zero values (Moncho et al., 2012). Thus, the possible overshooting of the end of the 

accumulated probability curve is greatly reduced. 

 

2  Study area and data 
 

2.1 Study area  

 

In this study we analyze the most extreme rainfall area of Spain, which is found mainly on the 

Mediterranean coast (including Balearic Islands) and, with a lesser extent, in some parts of 

northern and inner Iberian Peninsula. Mediterranean climate prevails in most of the studied area 
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except on the northern peninsula, which has a strong influence of oceanic climate (Capel-

Molina, 2000, Martín-Vide and Olcina, 2001). Extreme monthly precipitation can have values 

ranging from a total amount of 0 mm (in July in some south-eastern areas) to almost 1000 mm in 

northern areas. This value is also measured sometimes on the Mediterranean coast, where a high 

amount of precipitation in only a few days is usually recorded (Martín-Vide, 2004). This area is 

located in the north of Alicante and in the south of Valencia provinces, and has special interest 

because it also holds the record for Spain of rainfall in a day (817 mm). 

 

2.2 Observations data  

 

A group of rain gauges belonging to the Spanish Meteorological Agency (AEMet) has been 

selected by a two stages process. First, a group of 5,217 rain gauges was chosen by limiting its 

length to at least 3,600 daily records within the used common period with the ERA40 reanalysis 

(1958-2000). In the second stage, we selected the rain gauges that have recorded the most 

intense precipitations in Spain. In particular, we chose the threshold of 250 mm in a day for a 

return period of 100 years (i.e. centile 99.99726), and thus 144 rain gauges were found (Fig. 1). 

This theoretical return period has been considered in order to compare the extreme probability in 

the larger time-series (43 years) and the shorter time-series (10 years). 

 

2.3 Climate Models data 

 

We have used data from nine CMIP5 climate models, supplied by the Program for Climate 

Model Diagnosis and Intercomparison (PCMDI) archives. The climate models (Table 1) were 

selected according to the time resolution (daily) of available predictor fields, because it is 

required for the used downscaling method (see section 3.1). In particular, daily averages of the 

geopotencial height at 1000 and 500 hPa were used to calculate geostrophic winds (predictors) 

for both the historical simulation and for two future climate projections corresponding to the 

Representative Concentration Pathways RCP4.5 and RCP8.5 (Taylor et al., 2009). The raw 

output has been used, i.e. the data are used as they are provided without any treatment (bias 

correction or any other processing). Only the raw output was chosen because models do not have 

the same number of runs, and it should not give more weight to a type of simulation than to 

other. Every model has its own defined grid and a calendar of its choice. 

 

2.4  Reanalysis data 

 

In order to study the behaviour of the CMIP5 models historical simulations, we have used the 

ECMWF (European Centre for Medium-Range Weather Forecasts) ERA40 Re-Analysis (Uppala 

et al., 2005) for the 1958-2000 period. The same large-scale fields than for CMIP5 were taken 

from the ERA40 Re-Analysis (geopotencial height at 1000 and 500 hPa). The Re-Analysis has a 

reduced Gaussian grid with approximately uniform 125 km spacing. In our work, the original 

ERA40 grid has been interpolated (by using the Bessel interpolation applied to 16 points) to the 

grids used by each one of the climate models to be downscaled. The limits of the used 

atmospheric window are 31.500ºN to 55.125ºN latitude and 27ºW to 14.625ºE longitude; this 

window has been defined trying to cover both the geographic area under study as well as the 

surrounding areas with meteorological influence on the Iberian Peninsula. 

 

3  Methodology 
 

3.1 Downscaling method 

 

This work uses the two-step analogue/regression statistical downscaling method developed by 

Ribalaygua et al. (2012). A brief summary of the two-step method is presented in this section.  
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The first step is an analogue stratification (Zorita and von Storch, 1999): the n most similar 

days to the day to be downscaled are selected. The similarity between two days was measured 

using a weighted Euclidean distance according to three nested synoptic windows and four large-

scale fields used as predictors: (1) speed and (2) direction of the geostrophic wind at 1000 hPa 

and (3) speed and (4) direction of the geostrophic wind at 500 hPa. For each predictor, the 

distance was calculated and standardised by substituting it by the closest centile of a reference 

population of distances for that predictor. The four predictors were finally equally weighted, 

while the synoptic windows had different weights. 

In the second step, we downscale together a group of m problem days (we use the whole 

days of a month). For each problem day we obtain a “preliminary precipitation amount” 

averaging the rain amount of its n most analogous days, so we can sort the m problem days from 

the highest to the lowest “preliminary precipitation amount”. And for assigning the final amount 

of rain, we take each of the amounts of rain of the m×n analogous days, then we sort those m×n 

amounts of rain and then we cluster those amounts in m groups; every quantity is then assigned, 

orderly, to the m days previously sorted by the “preliminary precipitation amount”. An example 

of this is shown in Table 2. 

The first and second steps of the downscaling method are linked: particularly, the choice of 

m depends on the value of n. It is assumed that the climatic characteristics of rainfall vary little 

within a month. For this reason, the n×m analogous days of a month can be mixed in order to 

obtain a better ECDF, i.e. with tails less smoothed. Therefore, the number of problem days is 

chosen as m = 30, and the number of analogous days (n) was selected based on this assumption. 

Several tests were previously performed to find the best n for this work. The analogue 

stratification obtained similar Ranking Probability Score (RPS about 8%) for values of n 

between 20 and 40 analogous per day. Therefore, the second step was crucial to determine the 

best n: If the population of analogues (n) exceeds the number of problem days (m), the final 

precipitation is too smooth (underestimates heavy rain and dry days) due to the average per 

problem day. The probability distribution of the simulated precipitation is more similar to that 

observed when n is smaller because its average is least smooth. In theory, it is expected that n = 

1 obtains the highest similarity in the empirical cumulative distribution (ECDF). However, the 

RPS is better for n higher than 20 and therefore we chosen n = m = 30. This case is an optimum 

value even compared with the ECDF simulated with n = 1, at least according to the Anderson 

Darling test (Ribalaygua et al., 2012). 

 

3.2 Cumulative Probability Functions 

  

The cumulative probability distribution () is the function that describes the probability of 

registering a daily precipitation equal or minor than p, i.e., the sum of frequency of days with a 

precipitation equal or minor than p. We can distinguish between empirical and theoretical 

distributions: If the curve is estimated from a time series of precipitation (observed or 

simulated), we will refer to an empirical cumulative distribution function (ECDF). However, if 

the curve is obtained by a theoretical mathematical function, we refer to it as theoretical 

cumulative distribution function (TCDF). For simplicity, all theoretical functions that we have 

considered require a standard precipitation, , defined as: 
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  Eq. 1 

where p is the daily precipitation. The parameter Po is the most probable value and P1 is the scale 

factor. Both parameters depend on the probability distribution used. We have chosen theoretical 

distributions able to fit the entire set of empirical values, including the zeros. Thus, the possible 

overfitting of the end of the probability curve is greatly reduced. In particular, we have used 

several probability distributions, based on four-parametric versions (p; Po, P1, w, h) of five 
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distributions (Eq. 2 to 6): Gamma, Weibull, Classical Gumbel, Reverse Gumbel and Modified 

Log-logistic (Moncho et al., 2012). 
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where Po, P1, w and h are the four parameters of the probability distributions. Each theoretical 

distribution is fitted to the empirical cumulative probability using a Newton-type algorithm 

(Dennis and Schnabel, 1983). In order to obtain a better correspondence between precipitation 

and return period, the mean square error was minimized not only for the low cumulative 

probability but also for the high (symmetrical weighting for the lowest and highest values), thus 

the measure to minimize is a dual mean normalized square error (DNSE): 
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where the first and second factors of the product are respectively for low and high cumulative 

probability. All the fits were carried out using a parametric initialization obtained by maximum 

likelihood inference (Coles, 2001, Raue et al., 2009). Inference with Profile Log-Likelihood 

approach was applied to the CDF (see appendix A).   

 

3.3 Return periods estimation 

 

The return period, y, of a precipitation higher than p is defined as the inverse of the probability of 

a rainfall higher than p is recorded in one day, i.e., y(p) = 1/[1– (p)], where (p) is the value of 

the ECDF or TCDF for a precipitation p. To estimate precipitations associated with certain 

return periods, we used theoretical probability distributions (k). Each theoretical probability 

(Eq. 2 to 6) is fitted to the empirical cumulative probability (emp). Finally, the expected 

precipitation p of a certain return period of interest y is given as:  
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where k
–1

 is the inverse function of the k-distribution, y is the cumulative probability 

corresponding to the return period of interest, and MNAEk is the mean normalized absolute error 

of the k-distribution, i.e.:  
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where pi,emp is the empirical precipitation greater than 0 corresponding to each i-value of the 

empirical cumulative probability (emp); pi,k is the corresponding fitted i-value, according to the 

theoretical k-distribution (k). Finally, n is the number of different values of precipitation greater 

than 0, according to the empirical cumulative probability. To validate the simulation of the 

extreme values, the last two values of the tail are not used for the fits. 

  

3.4 Systematic error correction 
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A systematic error is obtained by comparing the simulated precipitation (from climate models 

historical experiment) with the observed precipitation (from reference time-series). In order to 

correct this systematic error, it is necessary to have long time-series of reference, because the 

large natural variability of precipitation has a significant uncertainty associated. For that reason, 

we have extended the observed time series downscaling ERA40 reanalysis (1958-2000) before 

validation. Due to systematic error that downscaling method introduces into the extreme rainfall, 

we chose to correct the ECDF of each ERA40 simulation (pera), with reference to observations 

(pobs) in the common period (marked as *). This correction is based on quantile-quantile 

parametric transferences (Benestad, 2010, Monjo et al., 2014). Therefore, the extended time-

series (pobs’) of each rain gauge is: 

  )(' *

1

* eraeraobsobsobs ppp 


  Eq. 10 

where obs* and era* are the ECDFs of the observed rainfall and of the downscaled ERA40 

simulation, estimated in the common period. The symbol  joins two time-series: the term on 

the right is the result of the correction of downscaled ERA40 rainfall, while the term on the left 

is the original observed time-series (pobs). 

After obtaining the extended time-series (pobs’), the same probabilistic correction was 

applied for the downscaled projections simulated by the climate models (CMs), according to: 

  )(' *

1

'* CMCMobsCM pp 


  Eq. 11 

where CM* is the ECDF of the downscaled CM simulation, estimated in the common period 

with the extended time-series, and obs’* is the ECDF of this extended observed time-series 

(pobs’). 

 

3.5 Statistical analysis   

 

First, we analyzed the goodness of the process of extending each time series using the ERA40 

reanalysis. For this, the mean normalized absolute error (MNAE) is obtained for the five 

probability distributions fitted to the time-series pairs (observed and simulated). In addition, the 

Kolmogorov-Smirnov test (Marsaglia et al., 2003) was applied to analyse the statistical 

significance of the similarity of the time-series after probabilistic correction.  

For analysis of extreme rainfall, four different return periods are considered: 10, 20, 50, and 

100 years. A validation of the method is done by comparing the downscaled ERA40 simulation 

with the observed time-series. The comparison is performed before and after applying the 

probabilistic correction, in the common period for each station, and for each return period. 

Similarly, extreme precipitation obtained for historical simulation of the models is compared 

with the extended observed series. 

To analyze the possible change of extreme precipitation, the reference period was 

considered as large as possible (50 years), i.e. 1951-2000 for the past and 2051-2100 for the 

future. The significance of the change is estimated for the RCP4.5 and RCP8.5 scenarios, with a 

p-value for the whole of the 9 climate models, by using the Kolmogorov-Smirnov test (KS) and 

the Student’s t-test (ST). All p-values were calculated assuming independence between the time-

series. 

 

4  Results 
 

4.1 Validation of the method for extreme precipitation 

 

For extending each observed time-series, it was found that simulation obtained by downscaling 

ERA40 (output) is climatically very similar to the observed time-series used as base (input). In 

particular, the simulated time-series passed the Kolmogorov-Smirnov test (p-value > 0.05, 

comparing with the observations) for general rainfall. However, the test was not passed for the 

most intense rainfall (e.g. with return period greater than 1 year). This result justified the need to 
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correct the simulated time-series to extend time-series, and to study the extreme rainfall of all 

simulations. Alternatively, relations with the closest and longest observations were explored, but 

finally they were not used for extending because are generally less similar to each observed 

series than its simulation from the downscaled ERA40.  

In order to prepare the correction, theoretical distributions were weighed according its 

MNAE of fit, separately for observed and simulated time-series. The best distributions were 

generally different for the observed time-series and for the simulated ones, moreover, the first 

were fitted with a lower error (Fig. 2). Modified Log-Logistic was chosen more times (as the 

best fit) for the observed data, while for the simulated data the Reversed Gumbel was obtained 

more times. In any case, the best fit for each time-series presented a MNAE between 0.02 and 

0.12 for the observations and between 0.02 and 0.22 for simulations of downscaled ERA40 (Fig. 

2, black boxplot). This goodness-of-fit was considered enough to apply a probabilistic correction 

to the simulated series using the best transfer function in each case. 

However, the fit prediction of the two highest values of each distribution shows a MNAE 

between 0.05 and 0.26 for the most of the rain gauges, particularly between the first (Q1) and 

third (Q3) quartiles of the cases (for both observations and simulations). In cases with worse 

ranking (e.g. 90
th

 percentile of the worst rain-gauges), the MNAE is greater than 0.5. This result 

shows the limitation and the high uncertainly linked to the natural variability of the most extreme 

precipitation. 

For this reason, a comparative analysis of the extremes was carried out before and after 

correcting the simulated time-series, for the common period of observations. Before probabilistic 

correction, the ERA40 extreme precipitation (simulated by downscaling) had a bias between –12 

and –40% for a 10y-return and –50 and –20% for a 100y-return, for its Q1 and Q3 (Fig. 3, right). 

After correction, the bias decreased and placed generally between –12 and +12%, and 

simulations passed the Kolmogorov-Smirnov (p-value > 0.05) for the extreme rainfall, 

comparing with the observations. Therefore, the method was validated for our purpose and can 

be applied to remaining steps of study. 

Each observed time-series were extended using its associated simulation of downscaled 

ERA40, after correction; and with these extended series, the climate projections of the CMs also 

were corrected. The bias of the extreme precipitation, obtained for the historical simulation of 

the models, is also about between –12 and +12% (Q1 and Q3) when compared to the extended 

observations in the common period (Fig. 4, right). With this, the mean absolute error of the 

100y-return precipitation simulated by the historical is mainly between 5 and 25%. This result is 

similar to the MNAE of highest values obtained by fitting the theoretical distributions to the 

observations. Combining the nine climate models, final error for the extreme precipitation 

estimation is about ±7% (Q1 and Q3) with a MNAE between 3 and 15%. Therefore, this range 

error is obtained from the limitation of the used methodology. 

 

4.2 Projected changes in extreme precipitation 

 

Projections showed a general decrease in annual mean precipitation (changes between –7% of 

Q1 and –20% of Q3), which are in agreement with other studies (Collins et al., 2013). However, 

the decrease is less clear when we focus on the most intense precipitation. For example, slight 

changes in the 95
th

 percentile are expected between –3% and –6% (Q1 and Q3) for most of 

studied stations. Possible changes in the extreme precipitation are mainly between –20% and 

+15% for the 10y-return period, and between –25% and +25% for the 100y-return period, 

according to both RCP4.5 and RCP8.5 scenarios. Significance in the changes was analysed using 

the ensemble strategy. 

In most of the cases, random errors (from section 4.1) are too large compared to the changes 

of extreme precipitation estimated by the climate projections. The use of ensembles of models 

can help to better quantify the uncertainty associated with the natural variability of extreme 

precipitation.  
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In fact, after conducting an ensemble analysis, some stations show significant changes for 

the 10y-return precipitation, with decreases of between 10 and 30%. In particular, these are three 

for the RCP4.5 (Fig 5 left) and six stations for the RCP8.5 (Fig. 5 right). For the other studied 

return periods, the projected changes are similar –the decreases predominate over the possible 

increases. This predominance is somewhat lower for the 100y-return precipitation (Fig. 6): only 

one station for RCP4.5 and three for RCP8.5 show decreases with a significance level (p-value > 

0.9). Higher decreasing in low intensities is also found by Rajczak et al. (2013) for the 

Mediterranean basin, according with several regional climate models from the ENSEMBLES 

project (van der Linden and Mitchell, 2009). However, the same models projected that 

Mediterranean will experience an increase in heavy precipitation (Rajczak et al., 2013).  

In the present study, a statistically non-significant increase greater than 20% is projected 

under both scenarios for the 100y-return precipitation in the coastline of southern Valencia and 

northern Alicante. This possible increase (p-value > 0.5) would be expected close to the station 

where the maximum precipitation was recorded (see Fig. 1). In that area, extreme rainfall could 

suffer a certain displacement towards the sea; i.e., results show a possible decrease in a few 

kilometers inland but with a possible increase in the coastline. Although there are some 

differences in magnitude between the two scenarios, a spatial consistence (between inland and 

coastline) is observed for the sign of the possible change in that region. Projected relative 

changes are similar (in terms of sign and value) for the 50y-return precipitation but with a lower 

significance; therefore only the 100y-return is shown. The 20y-return precipitation is projected 

with an intermediate change in magnitude respect to the 10 and the 100y-return period. These 

results are consistent with the Fifth Assessment Report of the IPCC, which does not project 

significant changes in 20y-return rainfall for the study area (Collins et al., 2013). 

In most of the cases, some random differences in magnitude and significance of the 

projected changes can be found between the RCP4.5 and RCP8.5 scenarios, but no general 

differences in the sign of the possible changes. For example, for the 10y-return precipitation, 

when the significance level is reached under a scenario, it is not achieved (but is generally close) 

in the same locations for the other one. The differences can be explained as a consequence of the 

non-linear behaviour of precipitation, as well as of its natural variability. In other words, 

although a priori more significant changes could be expected under the RCP8.5, they can be 

diluted by the natural cycles and even smoothed by a non-linear compensating mechanism 

regarding a minor radiative forcing (e.g. under the RCP4.5) (Mitchell and Hulme, 1999). Finally, 

an alternative or complementary explanation is to assume that natural variability of precipitation 

is possibly greater than the climate response to radiative forcings in the studied area (see section 

5.2). 

 

5  Discussion 
 

5.1 Choice of climate predictors 

 

Selection of climate predictors should be carried out based on theoretical considerations and the 

final use of the downscaled simulation. In particular, three basic ideas were considered in the 

used downscaling method: 

1. The stationarity: The physical forcings of the selected predictands should be strongly linked 

to the predictands in order to these linkages do not change. In contrast, the use of empirical 

analyses could result in non-physically based relationships that may be not applicable in the 

future due to the stationarity problem.  

2. The no seasonality: Since the climatic characteristics of the calendar seasons may change, 

predictors/predictands relationships detected in a particular season of the “present climate” 

would not be applicable for the future climate. In fact, seasonal stratification does not improve 

the skill of the used method, hopefully because the relationships it uses correctly reflect the 
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physical links between predictors and predictands, i.e., they are not just empirical relationships 

(Ribalaygua et al., 2012). 

3. The limitations of the GCMs: Due to the method is finally applied to GCM outputs, 

predictors selected should be well simulated by the GCMs. According to this, some general and 

theoretical considerations have been identified: 

-  The predictors should be relative and field variables, rather than absolute and point values, 

because the former are more reliably simulated by GCMs. 

-  The predictors should be suitable for the available temporal and spatial resolution of the 

GCM outputs. Many of the physical forcings of the predictands can only be captured 

working at temporal and spatial scales that are as small as possible. This could be 

especially relevant for the simulation of some extreme precipitation events. For these 

reasons, we work at daily and synoptic scales, because these are the scales at which the 

GCMs provide better information. 

-  The predictors should be easily resolved by the models. For example, GCMs simulate 

better free-atmosphere rather than boundary layer variables. Geostrophic winds are some 

of the variables best simulated (Brands et al., 2010). Moisture fields are not considered in 

this work because some GCMs present difficulties to simulate (Hu et al., 2005; John and 

Soden 2007; Brands et al., 2010). 

With all these ideas, geostrophic winds at 1000 and 500hPa were selected as representatives of 

atmospheric configuration. Other important predictors, such as the moisture, have been left out. 

However, if moisture captures physical links for precipitation, these are related with the forcings 

by upwards movements of air. In fact, the most important forcings of upward movements are 

three: (1) dynamic forcing, (2) topographic lift and (3) convection. 

Dynamic forcing at synoptic scale is determined by geopotencial configurations at 1000 and 

500 hPa. Topographic lift could be considered attending at surface winds, which are strongly 

related to geostrophic flux at 1000 hPa. 

Convection is an upward movement caused by sensible and latent heats. Due to the small 

scale of this phenomenon in its initial state, this is the most difficult upward movement forcing 

to simulate. However, we can assume that synoptic configuration (mainly 500 and 1000 hPa) 

determines both the presence of necessary moisture (e.g. by wind direction) and the presence of 

unstable atmospheric profile (thermal or dynamic instability) for the convection occurrence: 

presence of “heat lows” and/or depressions at high levels. However, this approach shows some 

limitations because other triggering factors are also necessary (differential surface heating, 

breeze/wind, topographic lifts, frontal lifts, gust front of other storms, etc.).  

 

5.2 Cascade of uncertainty 

 

Final projections have an important uncertainty which is the sum of the four main sources: (1) 

downscaling/correction methodology, (2) CMIP5 climate models / runs, (3) choice of RCP 

scenarios and (4) natural variability of precipitation (e.g. interannual variation).  

The choice of downscaling methodology is a key to achieve climate simulations consistent 

with observations and which in turn are physically robust. The analogue stratification reflects the 

non-linear physical connection between a certain synoptic configuration and the local 

precipitation. We assume that although the frequency of each synoptic configuration will change, 

its physical connection will be similar to the past (stationarity). This can be observed in the 

ability of the method to reproduce the evolution of the recent climate (Ribalaygua et al., 2012). 

The used statistical downscaling method has been compared with other statistical and 

dynamical downscaling methods, obtaining good results for Spain and Europe (STARDEX 

2005, van der Linden and Mitchell 2009, Goodess et al. 2011). Nevertheless, the method still has 

limitations to simulate the most extreme precipitation, and therefore requires a correction of 

systematic error. The final bias of the corrected simulation is a random error between –12 and 

+12% (Q1 and Q3), which is low for a variable as the extreme precipitation. This may be due to 
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the novel correction method, which uses theoretical distributions that fits the entire probability 

curve, not just the upper tail. For this reason, classical 3-parametric distributions as LogNormal 

and Generalized Extreme Value cannot be considered in this study (Moncho et al. 2012). 

All fits are performed using the whole ECDF because the estimation of return periods has a 

great sensitivity depending on the number of available values of precipitation (i.e., length of 

time-series). That is, fit is better (less over-fitting) when all points of an ECDF are considered, in 

contrast to when only values exceeding a threshold are taken into account. However, an 

important uncertainty is expected when a fitted CDF is extrapolated for return periods very 

higher than length of time-series (e.g. 100y-return). In order to reduce the extrapolation error, 

five theoretical CDFs have been used (Eq. 2-6). The comparison between final simulations and 

observations for high return periods (Fig. 3) shows a low error (about 10%) for the extrapolated 

values, which guarantee the coherence of the extrapolation method.  

In other hand, an ensemble strategy with nine models was used to reduce the uncertainty 

associated with climate models. Combining the nine climate model outputs, final methodological 

error for the extreme precipitation estimation is about ±7%. However it seems that natural 

variability achieves mask changes in extreme precipitation projected by models. That is, possible 

changes between -30 and 30% are less than the interannual and interdecadal variability. In fact, 

the differences between the used RCP scenarios do not follow a pattern consistent with a 

progressive climate response to radiative forcing. That is, the projected changes are not 

substantially greater for the higher RCP. 

Interpretation of the results presents an additional constraint. The non-significant variation 

of extreme precipitation should be understood mainly in terms of the frequency of occurrence. 

That is, the statistical downscaling method is used to capture synoptic configurations that cause 

extreme rainfall, and thus, changes in frequency of these configurations are reflected by the 

climate projections. However, the non-significance of the projected variations does not take into 

account directly the possible effect of increased precipitable water due to global warming (Wang 

et al., 2008, Ye et al., 2014). Despite this, an increase of wettest configurations could be 

indirectly captured by the analogue stratification in the climate projections. These possible 

effects will be explored in future works considering several issues: 1) the incorporation of new 

predictors in the analogue stratification tends to smooth the distribution of the similarity 

measure; 2) for extreme rainfall events, the occurrence depends more on an infrequent synoptic 

configuration (500hPa/1000hPa) than on the precipitable water; 3) when the event occurs, 

precipitable water influences on the final rainfall amount. 

 

6  Conclusions 
 

The methodology used to calculate the extreme precipitation has a significant advantage over 

classical methods of fitting probability distribution. The five used theoretical distributions 

adequately fit to the entire empirical curve. Therefore, the combination of these curves is able to 

reduce the estimation error of extreme rainfall, avoiding overshooting in the upper tail.  The best 

fit for each time series presented a mean normalized absolute error between 0.05 and 0.28 (Q1 – 

Q3). The final error of the extreme precipitation estimation was between –12 and +12% (Q1 and 

Q3), for each climate simulation. With this, the eighteen analyzed projections show that changes 

in extreme rainfall patterns generally be non-significant compared with the natural variability of 

precipitation. However, for some places, significant changes are detected in the extreme rainfall 

for the 2051-2100 when comparing with the 1951-2000 period. Maximum 24h rainfall could 

decrease about 20% in some areas during the common cut-off low episodes (10y-return), but not 

for the most extreme cut-off low episodes (100y-return). In fact, a possible increase about 20% is 

projected under both scenarios for the 100y-return precipitation in the coastline of southern 

Valencia and northern Alicante. In this area, extreme rainfall could suffer a certain displacement 

towards the sea. 
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In general, some random differences in the magnitude and significance of the projected 

changes can be found between the RCP4.5 and RCP8.5 scenarios, but no differences in the sign. 

This is probably due to the large interdecadal variability, which achieves to mask the 

significance of climate change. Nevertheless, these results should be interpreted with caution 

because of the limited number of models and climate scenarios. This work shows that the 

developed methodology is useful for studying extreme rainfall under different climate scenarios. 

However, the study shows several improvable issues such as the possible incorporation of the 

precipitable water in the second step of the method (section 3.1) and application to a larger 

number of climate projections. 
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Appendix A. Mathematical considerations 

 

A.1 Used log-likelihood function 

 

Density probability of the empirical values of precipitation has not sense. That is, due to the 

limited resolution data (usually 0.1 mm), measured values are discrete with repetitions. 

Therefore, cumulative distribution function (CDF, ) and the empirical CDF (ECDF, emp) are 

taken to analyze the likelihood. Given a theoretical CDF,  (xi, p), with k parameters p = (p1, 

p2, …, pk), and assuming independent values of precipitation xi, the likelihood L can be defined 

as (Owen, 2001): 

  



n

i

y

ii
ipxpxL

1

1 ),(),(    Eq. A1 

where yi is the absolute frequency of each one of the n different values of precipitation xi, sorted 

from the lowest to the highest. For precipitation less than zero, x0 < x1 = 0, it is taken (x0)  0   

emp(x0). Therefore, the log-likelihood function is: 
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The absolute frequency yi can be written as: 

  )()(· 1 jempjempi xxNy    Eq. A3 

Then, log-likelihood is: 
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A.2 Critical issues for extreme values 

 

The maximization of the log-likelihood is dominated by the most frequent values (approximately 

for  < 0.75). Hence, fit is not optimized for the highest values of the precipitation. 

Alternatively, the fit can be restricted to only high values, according to the extreme value theory 

(Coles, 2001). In accordance with the extremal type theorem, the expected distribution is a 

Gumbel (type I, Eq. A5), Fréchet (type II, Eq. A6) or Reversed Weibull (type III Eq. A7).  

http://data-portal.ecmwf.int/data/d/era40_daily
http://data-portal.ecmwf.int/data/d/era40_daily
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     expexpG   Eq. A5 

  w

F

  exp   Eq. A6 

   w

W   exp   Eq. A7 

with w taken as shape parameter and  defined as: 
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
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where p is the daily precipitation, parameter Po is the most probable value and P1 is the scale 

factor. 

The type III can be rewritten for the negative of the precipitation because Reversed Weibull 

is truncated for a positive value (in contrast with the observed precipitation). The Fréchet can be 

approximated by Taylor for extreme values  >> 1 as: 
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  Eq. A9 

However, several problems are raised. Usually, extreme values of precipitation are taken as 

the maximum daily amount of each year to build a full data set. Nevertheless, some daily values 

of a same year can be more extreme than the maximum value of other years. For this reason, a 

better estimation of return periods is achieved if all daily values are taken. With this assumption, 

it is necessary to define the beginning of the extreme tail by a cut-off threshold. Although we are 

interested in rainfall of very high return periods (especially 100 years), the available data are 

usually about 10 or 20 years in length. How many values of the tail must be taken to fit some 

extreme type distribution? The arbitrariness of selecting a cutting value can affect the outcome, 

especially since the maximum likelihood fitting heavier for the most frequent (low) values. In 

addition, if a few values of the tail are taken then it is very likely that the fit suffers overfitting. 

Therefore, this paper search alternatives that attempt to address these issues (avoiding cut-offs 

and overfitting, while respecting the extreme tail satisfies the extreme value theory). 

 

A.3 Proposed solution 

 

In order to solve the above problems, it is suggested to use theoretical CDFs attempting to be 

fitted to whole ECDF. These CDFs must satisfy its tail tends to resemble some type of extreme-

value distribution. Particularly, in the limit as w
 >> h three of our distributions tend to resemble 

type I (Gumbel) or the rewritten type III (Weibull): 

  hw   exp12        w  exp12   Eq. A10 

   hw   expexp3        w  expexp3   Eq. A11 

   hw   expexp14       w expexp14    Eq. A12 

The Fréchet type can be found for h << w/: 
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Choosing h ≈ 1, gamma distribution is the rewritten type III:  

 
 
 h

h w







,
1      w  exp11   Eq. A14 

Therefore, our distributions include the three types of extreme-value distributions, at least 

for the tails or for a particular value of h. With this, there is an additional degree of freedom, h, 

which is intended to serve as a bridge between the shape of the distribution for the low values 

and the shape of the curve for the high values. Thereby, the transition between non-extreme and 

extreme values is smoother, decreasing the effect of overfitting. 
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In other hand, the maximization of the log-likelihood is very useful to found of value of h 

and Po, since they are related with the most frequent values of precipitation. However, the fit of 

w and P1 require a special approach which is to minimize the dual mean normalized square error 

(DNSE): 
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  Eq. A15 

where the first and second factors of the product are respectively for low and high cumulative 

probability. This minimization allows fitting 4-parametric distributions to whole ECDF of daily 

precipitation.  

Note that DNSE uses a symmetrical weighting for the lowest and highest values of 

precipitation, in contrast with the classic normalized square error (NSE). If one minimizes the 

NSE of the CDF, the result is over-fitted on the bottom of the CDF (because the top is saturated 

to 1). In a similar way, if one minimizes the NSE of the complementary curve (1 – CDF), the 

result is over-fitted on the top of the CDF. DNSE is defined as the product of both errors, so a 

symmetrical weighting is achieved for the bottom and top of the CDF.  
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FIGURE CAPTIONS 
 

Figure 1. (Left) Location of the available rain gauges and its historical maximum daily 

precipitation. (Right) The 144 rain gauges selected for this study: for a return period of 100 

years, the ones with an expected daily precipitation over 250 mm. 

 

Figure 2. Boxplot for every rain gauge of the Mean Normalised Absolute Error (MNAE) 

between the fitted CDF and the original ECDF of the observed (left) and simulated by 

downscaling (right) series, for the five used theoretical distributions and for the best one in 

each case. 

 

Figure 3. (Left) Expected maximum precipitation in a day for several return periods (10, 20, 

50 and 100 years) according to the observations and simulations of downscaled ERA40, both 

uncorrected and corrected. (Right) Bias of the uncorrected and corrected simulations respect to 

observed time-series.  

 

Figure 4. Validation of the studied climate models: (Left) Extreme precipitation for several 

return periods. (Right) Bias of the same extreme precipitation, when compared with the 

extended observations (white colour). 

 

Figure 5. Expected change of extreme precipitation associated with a return period of 10 

years, and the statistical significance of this change (p-values according to KS test), for two 

emission scenarios: (Left) RCP4.5 (Right) RCP8.5. In the lower panels, detail of the densest 

area (Valencia). Black circles show the places with significant change (p-value > 0.95) 

according to KS test, while green circles uses ST test. 

 

Figure 6. The same as Fig. 5 but for the return period of 100 years. 
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