Post processing of ECMWF EPS outputs by using an analog and transference technique to improve the extreme rainfall predictability in Ebro basin (Spain).

Jaime Ribalaygua1,2, Robert Monjo1,2, Javier Pórtoles2, Emma Gaitán2, Ricardo Trigo3, Luis Torres1

1MeteoGRID, Madrid, Spain.
2Climate Reasearch Foundation (FIC), Madrid, Spain.
3Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.

Hydrometeorological phenomena present a high spatial and temporal variability that increases the difficulty in producing skilful forecasts at the local scale. New meteorological models and probabilistic statistical post-processing systems have increased the accuracy of both the magnitude and spatial location of the prediction of extreme precipitation events in Europe, contributing to the aim of obtaining earlier and accurate flood forecasting, once a precipitation event is predicted. Under the framework of the IMDROFLOOD project, flood hazard are quantified by combining dynamical and statistical models. Particularly, a two-step analog and regression method is applied to each of 50+1 outputs provided by the ECMWF Ensemble Prediction System in order to estimate the precipitation amount for extreme rainfall events. This dynamical-statistical system is validated for the Ebro basin, a highly regulated basin in NE Spain. Results showed a significant improvement in the predictability of most extreme rainfall amounts, especially in the estimation of the maximum point precipitation.

Acknowledgment. The authors would like to thank the EU and the Spanish Ministry of Economy and Competitiveness (MINECO) for funding, in the frame of the collaborative international consortium IMDROFLOOD, financed under the ERA-NET Cofund WaterWorks2014 Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI)