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1. THE SIMULATION OF FUTURE CLIMATE 

 

General Circulation Models (GCMs) are the most powerful tools for producing future climate 
projections (Huebener et al., 2007). However, GCMs currently operate at spatial resolutions of 
about 200 km and this low resolution is frequently unsuitable as input for impact models (von 
Storch, 1994; Mearns et al., 1997). These impact models are essential for designing adaptation 
policies that seek to minimize the negative impacts of climate change and to exploit the 
positive ones. For this reason, an important effort has been put into the development of 
strategies to infer high-resolution information from low-resolution variables, i.e., ‘sensibly 
projecting the large-scale information on the regional scale’ (von Storch et al., 1993). All these 
strategies fall into the overall denomination of downscaling techniques. 
 
There are two main downscaling approaches (Murphy 1999; Fowler et al. 2007). In the so-
called dynamical downscaling, high-resolution fields are obtained by nesting a Regional 
Climate Model (RCM) into the GCM (Giorgi et al., 2001; Christensen et al., 2007; Giorgi et al., 
1994; Jones et al., 1997), or using a GCM with variable resolution (stretching technique) 
(Déqué and Piedelievre, 1995). In the statistical approach, high-resolution predictands are 
obtained by applying the relationships identified in the observed climate between these 
predictands and large-scale predictors to the GCM output (Wilby et al., 2004; Imbert and 
Benestad, 2005). 
 
Dynamic and statistical approaches have advantages and disadvantages. Both need 
assumptions that cannot be verified in a climate change context (Giorgi et al., 2001) 
contributing to the uncertainty cascade leading to the climate simulations. Several criteria can 
be used to assist in the selection of the most suitable approach depending on the application 
(Wilby et al., 2004). 
 
Climate scenario uncertainties have to be considered in a risk assessment framework and it 
needs to be done through probabilistic climate projections. In this regard, statistical methods 
seem to provide a good downscaling option, because they need relatively less GCM driving 
data and computational resources for processing the growing number of available GCM 
simulations. In addition, when high resolution (local) information is demanded, statistical 
methods can perform better than dynamical ones (Van der Linden and Mitchell 2009), due to 
the present coarse resolution of nested or stretched models (and to the fact that RCMs do not 
use local observations which capture local meteorology). Higher diagnostic capacity of 
statistical methods at the local scale is generally accepted in the meteorological operational 
forecasting framework, where statistical reinterpretation systems are the main tool for 
obtaining local information. 
 
In the last decades, long-term statistics of climate have experienced relatively small changes 
compared to inter-annual variability. This variability offers an indirect way to assess the 
stability in a future climate context of statistical relationships used for downscaling. In this 
regard, two requirements have been identified for statistical downscaling performance: (i) 
performance should be good at different time scales (daily, seasonal, annual, decadal...) (Wilby 
and Wigley, 1997) and (ii) almost all of predictor situations in the GCM future climate must be 
within the applicability range of the statistical relationships determined for the calibration 
period of the method. 
 
Considering drawbacks and advantages of both methods, FIC researchers decided to develop 
a statistical downscaling technique named FICLIMA (Ribalaygua et al, 2013). FICLIMA has 
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been tested against other techniques in different scientific projects, both European1 and 
National (Spain)2 and applied in Europe and Latin America for different meteorological 
variables (temperature, precipitation, etc) with excellent results. 
 
Statistical downscaling techniques establish empirical relationships between fields of low 
resolution, called predictors, and surface variables, called predictands. Such techniques can be 
classified into four groups: generators of time (simulated stochastically, i.e. intrinsically, 
series of daily values consistent with climatology), transfer functions (based on regression 
models, both linear and nonlinear, establishing long scale relationships between local 
predictands and predictors), selection of analogues (consisting in selecting from among a set 
of data the "n" atmospheric patterns more similar to the day problem) and types of time 
(based on a pre-qualification of a finite number of groups obtained as a synoptic similarity 
between the fields of low resolution). 
 
The FICLIMA method combines two types of statistical techniques: the first step is a selection 
of analogs (or analog stratification), and in the second step some transfer functions are used 
on the days selected in the previous step. 
 
The purpose of this paper is to present an overview of the FICLIMA methodology and its 
rationale, in any case, if a deeper explanation of the theoretical method is needed then it is 
possible to access to 
 

http://www.ficlima.org/generacion-de-escenarios-locales/ 
 
where you can find more complete information on the methodology and some concrete 
examples of international projects in which it has been applied. 
 

                                                        
1 Statistical and Regional dynamical Downscaling of Extremes for European regions (STARDEX, 2002-2005),  Climate change 
and its impacts at seasonal, decadal and centennial timescales (ENSEMBLES, 2004-2009). 
2 First National Generation of Downscaled Future Climate Scenarios (2009), National Coordinated Programme for the 
generation of Downscaled Scenarios of Climate Change (ESTCENA, 2009-2012). 

http://www.ficlima.org/generacion-de-escenarios-locales/
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2. GENERAL AND THEORETICAL CONSIDERATIONS ON STATISTICAL DOWNSCALING 

 

The development of a statistical downscaling methodology and the selection of predictors is 
based on theoretical considerations, in which four basic aspects need to be considered: 
 

1. The stationarity problem: in a climate change scenario the relationships between 
predictors and predictands might change. Therefore, predictors should always be 
physically linked to predictands (because these linkages will not change) and 
consider the physical forcings of these predictands. 

2. The characteristics and limitations of the GCMs: the methodologies to be 
developed will be finally applied to GCM outputs. Predictors selected should be 
well simulated by the GCMs and temporal and spatial resolution of the GCM 
should also be considered. 

3. The statistical tool must reflect strong non-linear relationships that link 
predictors with most local surface weather predictands. 

4. For climate change applications it is advisable not to use seasonal stratification in 
the selection of predictors: in climate change scenarios, climatic characteristics of 
calendar seasons may change. Thus the predictors / predictands relationships 
detected in a group of days with concrete climatic characteristics belonging to a 
specific season, would not be applicable for future days if climatic characteristics 
of the season have changed. 

 
According to these aspects, the following conditions for selection of predictors have been 
identified: 
 

1. Selection of predictors should be undertaken based on theoretical considerations, 
rather than using empirical analyses (which could result in non-physically based 
relationships that might not be applied in the future due to the stationarity problem). 
Predictors should be physical forcings of the predictands or, at least, physically linked 
to the predictands. Furthermore, identified links between predictors and predictands 
should be those that best reflect the physical links between them. If these 
requirements are fulfilled, a good diagnostic capability will be obtained at the daily 
scale.  

2. Regarding GCMs, predictors should be: 
 Field variables rather than point values, because the former are more 

reliably simulated by GCMs. 
 Free-atmosphere rather than boundary layer variables because the former 

are more reliably simulated by GCMs. 
 Variables that are well simulated by GCMs. FICLIMA downscaling method 

have been adapted from a methodology used on a daily basis to produce 
operational meteorological forecasts. Many predictors are used in 
operational forecasts because they improve the forecasting skills, but 
some of them cannot be used in climate simulations because are too 
dependent on initial conditions to be well simulated by GCMs for the next 
decades. 

 Adapted to the scales in which GCMs provide information. Working with 
coarser temporal and / or spatial detail than those provided by GCMs 
means that some information is not used. Many of the physical forcings of 
the predictands can only be captured working at detailed temporal and 
spatial resolutions. This could be especially relevant for the simulation of 
some extreme precipitation events, which sometimes are produced by 
small and short-life atmospheric structures (convective structures). For 
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these reasons, downscaling methodologies should work at daily and 
synoptic resolutions, those provided by GCMs. 

3. The statistical method should include strategies to take into account the non-linearity 
of the relationships between many of the predictors and predictands. 

4. It is advisable not to make any seasonal stratification in the identification of the 
relationships between predictors/predictands. Sensitivity analyses performed with 
FICLIMA downscaling method shows that seasonal stratification does not improve 
forecast skills (because relationships reflect the physical links between predictors and 
predictands). 
 

The development of the FICLIMA statistical downscaling methodology and the selection of the 
chosen predictors have taken into account the conceptual framework presented above. 
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3. THE FICLIMA DOWNSCALING METHODOLOGY 

 

In general terms, the FICLIMA methodology estimates high-resolution surface meteorological 
fields for a day “x” (the problem day) in two steps: the first step is an analogue technique 
(Zorita et al. 1993); in the second step, high-resolution surface information is estimated in a 
different way for precipitation (using a probabilistic approach) and for temperature (using 
multiple linear regressions). A scheme of the methodology is shown in figure A.3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.3.1. Scheme of the FICLIMA methodology. 
 

 
 
Similar two-step approaches have been applied in operational forecasting (Woodcock 1980; 
Balzer 1991). For climate change applications, Enke and Spekat (1997) adopted a similar 
technique, but where the first step of analogue stratification is replaced by stratification using 
a predefined clustering of atmospheric patterns. Analogue techniques can be considered as a 
special form of the clustering approach, where a specific type is determined for each problem 
day, containing the n most analogous days. This strategy greatly reduces the variability within 
a predefined cluster, which includes days with quite different atmospheric configurations. As 
a result, analogue techniques generally offer higher diagnostic capability regarding high 
resolution effects than do predefined clustering schemes. Figure A.3.2 describes a general 
representation of the FICLIMA methodology. 
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Fig. 2: Method scheme.

METHOD
SCHEME

Day 12.418

Day 1

The precipitation field estimated for day "A",
is the average of the observed precipitation
fields of days i,j,k... (for precipitation, n=6),

taken from the reference data set.

. 
. 

.

Sea level

pressu
re.

500 hPa

geopotential

heights.

Daily

precipitation.

Reference daily data sets, f
or 1961-1994.

The method searches the "n" days with most
similar atmopheric fields to the fields of day "A",

among all the days of the reference dataset,.

Atmospheric fields of day "A", whose
surface fields are to be estimated.

Day 12.418

Day 1

Day "i"

Daily

maximum.

temperature.

Daily

minimum

temperature.

LINEAR ECUATIONS DETERMINATION

For each grid point (there are 203), two linear equations are obtained, using multiple regression
with forward and backward selection of predictors. The developmental sample is comprised of

the potential predictors (observed 1000/500hPa thickness; sine (day of the year);  weighted
average of the 10 previous days observed grid point mean temp), and the predictand (observed

Tmax or Tmin), of the "n" (150) most similar days.

POTENTIAL PREDICTORS FOR EACH GRID POINT

* 1000/500 hPa thickness over the grid point, for
   day i,j,k...
* Day of the year sinusoid function, for day i,j,k...
* Weighted average of the 10 previous days 
   observed grid point mean temp ((max.+min.)/2),
   for days i,j,k...

Day "j"

Day "k"

PREDICTAND:
Max. Temp. or Min. Temp.

PREDICTORS FOR THE EQUATIONS APPLICATION

* 1000/500 hPa thickness over the grid point, for
   day "A".
* Day of the year sinusoid function, for day "A"
* Weighted average of the 10 previous days (A-1,
   A-2....A-10) (previously) estimated grid point 
   mean temp.

LINEAR ECUATIONS APPLICATION

The 203 x 2 (max./min. temp.) obtained linear equations are applyed,
using as predictors the corresponding gridpoint values for day "A"

 (notice the 10 previous days gridpoint estimated mean temp. feed-back)

The max. and min. temperature fields for day "A" are estimated
by the independent application of the 203 (gridpoints) x 2 (max./min.)

linear regression equations.

Step 1

Step 2

 
Figure A.3.2 General scheme of the FICLIMA methodology (represented for the Iberian Peninsula).

 



3.1 FIRST STEP: THE ANALOGUE TECHNIQUE 

 
In the first step, the n most similar days to day “x”, identified on the basis of their 
low-resolution atmospheric fields, are selected from a reference dataset. The skill 
of the method depends on the spread and quality of the atmospheric and surface 
reference datasets and, in particular, on the measure used to determine the 
similarity between days (Matulla et al, 2008). Consequently, according to the ideas 
mentioned above, the similarity measure must contain diagnostic capability 
regarding high-resolution precipitation fields (i.e., low-resolution atmospheric 
fields considered to be similar according to the measure must be associated with 
similar high-resolution precipitation fields). Thus the similarity measure must 
assess the likeness of as many as possible precipitation physical forcings (see first 
aspect addressed in previous section) associated with the low resolution 
atmospheric configurations of the days being compared. In addition to diagnostic 
capability, the predictor variables of the measure must be reasonably well 
simulated by GCMs (see idea 2). 
 
Many statistical methods entail strongly automated procedures to select the best 
predictors and to adjust the optimum predictors/predictand relationships. This is 
not, however, easy for analogue techniques for which calibration entails a 
laborious task of testing different combinations of predictors and similarity 
measures. Nevertheless, this allows the selection of predictors and similarity 
measures under theoretical considerations, with the aim of capturing physical 
forcings between predictors and predictands in order to guarantee the stationarity 
of the relationships (see first aspect addressed in previous section). 
 
The similarity measure between two days must be a scalar magnitude (to allow 
ordering) and summarizes the resemblance of these two days with regard to their 
predictor fields. 
 
Different algorithms which have traditionally been used to assess similarity 
between fields were tested in the calibration process: Pearson correlation 
coefficients and several Euclidean and pseudoeuclidean distances. Similarity 
measures were required to not only deal with the general pattern of the days being 
compared, but also with the values of the corresponding individual points of both 
fields. For the latter requirement, Pearson correlation coefficients perform worse 
than Euclidean distances and thus provide lower precipitation diagnostic 
capabilities. The good performance of Euclidean distances is supported by the 
analogue technique literature (Martin et al. 1997; Kruizinga and Murphy 1983). 
 
The similarity between two days is calculated by determining (and standardizing) 
independently those days likeness with respect to each of the four final predictors 
fields. The unlikeness of days  and  regarding each predictor field P is 

calculated as a pseudoeuclidean distance with (eq. 1): 
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Where  is the value of the predictor P of the day  at the grid point k;  is the 
weighting coefficient of the k grid point; and N is the number of the atmospheric 
grid points. 
 
Once  has been calculated, it must be standardized. The standardization 

is carried out by substituting  by percentile p, which is the closest centile 

of the reference population of Euclidean distances among predictor fields P to the 
 value. The centile values are previously determined, independently for 

each P predictor field, over a reference population of more than 3,000,000 values 
of . The reference population is calculated by applying equation 1, with the same 

 values, to randomly selected pairs of days. If the closest value to  is 

, it means that about the  % of the 3,000,000 of  values are lower 

than . The use of centile instead of the original distance  allows 

consideration of dimensionless and initially equally weighted variables for each 
predictor P in the measure. 
 
After the  independent calculation and standardization (determination of 

the closest ), the final similarity ( ) measure between days  and  is 

given by the inverse of a weighted average of the centile for the P predictors  (eq. 
2): 
 
 

 
 
 
where  is the weighting coefficient of the predictor field P.  

 
Once the theoretical methodology has been set, P predictors will be selected for the 
study area (step 2). 
 

3.2 SECOND STEP 

3.2.1 Temperature: Multiple Linear Regression Analysis 

 

The procedure of estimation for temperatures requires, after the selection of the n 
analogous days described above (for temperature, n = 150), further diagnosis 
using multiple linear regression. Although predictor/predictand relationships 
determined in this second step are not linear, an important part of the non-
linearity of the links between free atmosphere variables and surface temperatures 
is reduced with the first step (analogue) stratification, which selects the most 
similar days with respect to precipitation and cloudiness (two of the variables 
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which introduce most non-linearity in the relationships). Linear regression 
performs quite well for the estimation of surface maximum and minimum 
temperatures due to the near-normal statistical distribution of these variables. It is 
important to remember that when using linear regression the predictand quantity 
is bound to have essentially the same statistical distribution as the predictor(s) 
variable(s) (Bürguer 1996). In this regard, potential predictors should possess 
close-to-normal distributions. 
 
Multiple linear regression is performed independently for each surface point, and 
uses forward and backward stepwise selection of predictors. We use at least four 
potential predictors: 
 

1. 1000/500 hPa thickness above the surface station. 
2. 1000/850 hPa thickness above the surface station. 
3. The solar irradiation of the day in the year associated to the studied 

day; it depends not only of the day in the year but also of the latitude 
of the studied station. 

4. A weighted average of the daily mean of the temperatures of the ten 
previous days at the studied station. 

 
Both thicknesses are used to include the strong relationship between lower 
troposphere and surface temperatures (a meteorological factor). The solar 
irradiation of the day of the year is used to consider the number of sunlight hours 
and its effect on the warming/cooling of the surface air (a seasonal factor). And the 
ten days weighted average of temperature is used to account for the soil thermal 
inertia influence (a soil memory factor). 
 
The non-linear influence of other important meteorological factors, such as 
cloudiness, precipitation and low troposphere wind speed, is considered through 
the first-step of analogue stratification. The regression is performed for a 
population of n days which present very similar precipitation, and subsequently 
very similar cloudiness, conditions. 
 
For each station (and each problem day) the regression is performed twice using 
as predictands maximum and minimum temperatures. Thus two diagnostic 
equations are calculated (using the predictand and predictor values of the n 
analogous days population) and applied to estimate both daily temperatures for 
each station and problem day. 
 

3.2.2 Precipitation: Probabilistic Approach 

 
Every problem day ( ) has n analogues ( ), each one with a certain similarity 

( ) (n=30 for precipitation). Each analogue ( ) has an observed 

precipitation ( ) and an estimated probability ( ), according to equation 3. 
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Thus each problem day ( ) has n pairs of [ , ], and a preliminary estimate of 

precipitation ( ) can be obtained by combining the n pairs according to equation 
4. 
 
 

 
 
 

Since it is calculated as an average, this preliminary estimate greatly smoothes the 
extreme values of precipitation and underestimates the number of dry days. 
 
In order to solve this problem the methodology designs an approach to obtain (e.g. 
a month) precipitation time-series for a certain period with a probability 
distribution similar to that obtained for the precipitation of all the analogues 
associated with the problem days of that period. 
 
In this approach, for a problem month with m problem days, there are n×m pairs of 
precipitation and probability [ , ]. These pairs are sorted by , and ranked 

according to equation 5, until they form groups of k pairs whose sum of 
probabilities  is 1; in this way we obtain m new precipitation values ( ). 
 
 

 
 

The m new precipitation values ( ) are assigned to the m days ( ) of the month 
according to the preliminary precipitation estimates ( ) obtained by equation 4, 
so that the highest  is associated with the day ( ) with the highest ; the second 
highest  with the day with the second highest ; and so on. 
 
Proceeding this way, the probability distribution of the m new precipitation values 
( ) is similar to the probability distribution of n×m values of precipitation ( ) - 
as desired. This method allows an empirical distribution of rain amounts for each 
day of the month to be constructed without assuming any a priori hypothesis 
about the probability distribution of each month (or assuming a particular 
associated analytical probability function such as the gamma function). 
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